Micromechanical-based criteria for the calibration of cohesive zone parameters
نویسندگان
چکیده
This paper presents a new micromechanical model for a collection of cohesive zone models embedded between each mesh of a finite element-type discretization. It aims to forth fully extend the previous linear results of [1] to the calibration of damageable cohesive parameters (cohesive peak stress, critical opening displacement, cohesive energy, etc). The main idea of the approach consists in replacing the underlying cohesive-volumetric discretization by an equivalent ’matrix-inclusions’ composite. The overall behavior of this equivalent composite is estimated using homogenization schemes (Hashin-Shtrikman estimate and the modified secant method) and is given in a closed-form as function of both cohesive and bulk properties and the mesh density. In the particular case of a bilinear cohesive law a micromechanical damage model for quasi-brittle materials is derived. The corresponding local-to-global relationships are obtained for any overall triaxiality loading ratio.
منابع مشابه
Calibration of Micromechanical Parameters to Reproduce a Frictional Cohesive Continuum by the Distinct Element Method
A new contact bond model based on the Mohr-Coulomb failure criterion has been implemented in PFC2D to reproduce the behaviour of frictional cohesive (c, φ) geomaterials. According to this model, the bond strength can be clearly divided into two distinct micromechanical contributions: an intergranular friction angle and a cohesive bond force. A parametric analysis has been run to validate the pr...
متن کاملSimulation of the Mode I fracture of concrete beam with cohesive models
Crack propagation modeling in quasi-brittle materials such as concrete is essential for improving the reliability and load-bearing capacity assessment. Crack propagation explains many failure characteristics of concrete structures using the fracture mechanics approach. This approach could better explain the softening behavior of concrete structures. A great effort has been made in developing nu...
متن کاملMixed-mode Cohesive-zone Models for Delamination and Deflection in Composites
Cohesive-zone models for interfaces incorporate both strength and energy parameters. Therefore, they provide a natural bridge between strength-based models and energy-based models for fracture, allowing delamination to be described by a single framework that covers a range of applications for which the strength or energy criteria alone might not be sufficient. In this paper, the relationships b...
متن کاملThree-dimensional elasticity solution for vibrational analysis of thick continuously graded sandwich plates with different boundary conditions using a two-parameter micromechanical model for agglomeration
An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with oriented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadrature method was an efficient and accurate numerical tool for discretizing equations of motion and for implementing vari...
متن کاملبررسی عددی رفتار ورقهای کامپوزیتی چندلایه فلز- الیاف تحت ضربه کم سرعت
In this article, low velocity impact behavior of fiber metal laminate (FML) composite plates is investigated under three different impact energies (12.7 J, 16.3 J and 24.2 J). Here, three modeling techniques are used. In one of the models the inter-laminar damage is neglected (model without delamination) and in other two models this damage is simulated using cohesive element and cohesive surfac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 246 شماره
صفحات -
تاریخ انتشار 2013